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This is the first part of a three-part study of the stability of vertically oriented 
double-diffusive interfaces having an imposed vertical stable temperature gradient. 
Flow is forced by a prescribed jump of composition across the interfaces. 
Compositional diffusivity is ignored, while thermal diffusivity and viscosity are finite. 
In this first part, basic-state solutions are presented and discussed for three 
configurations : a single plane interface, two parallel interfaces and a circular 
cylindrical interface. 

The stability of a single plane interface is then analysed. It is shown that the 
presence of the compositional jump gives rise to a new type of three-dimensional 
instability which occurs for any non-zero forcing. This is in contrast to the thermally 
driven flow adjacent to a rigid wall, which is unstable only for a finite value of the 
forcing and results in the growth of a two-dimensional perturbation. The timescale 
for growth of the new instability is given by 

where ( A P ) ~  is the prescribed jump in composition and dT/dz is the imposed 
temperature gradient. 

The influence of thermal diffusion is to enhance instability, while viscosity is 
stabilizing for nearly all wavenumbers. The interface is unstable for all finite 
wavenumbers if the Prandtl number is less than 1.472, while regions of stability in 
the wavenumber plane develop for small horizontal wavenumber and moderate 
vertical wavenumber for larger values of the Prandtl number. The neutral stability 
curves are investigated and the maximum growth rate of instability is identified for 
the whole range of values of the Prandtl number and its properties are elucidated by 
comparison with previous studies of flows near heated vertical walls. 

1. Introduction 
Double-diffusive convective flows occur in a wide variety of situations (Huppert & 

Moore 1976; Chen & Johnson 1984; Turner 1985) and this variety has motivated 
studies of the behaviour of nearly all possible configurations of imposed compositional 
and thermal gradients. Most studies have concentrated on horizontal interfaces 
across which vertical gradients of temperature and composition are imposed, with 
relative little attention being paid to vertical interfaces. This paper is the first of a 
three-part study of the stability of vertical interfaces, across which are imposed 
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jumps in composition and temperature, in the presence of a vertically oriented 
stabilizing temperature gradient. 

Three simple geometries are to be considered : a single plane interface, two parallel 
interfaces (i.e. a Cartesian plume) and a circular cylindrical interface (i.e. a 
cylindrical plume). In each case the composition and temperature prescribed on 
either side of the interfaces are such that there is no jump in density ; in the absence 
of diffusive effects, the system is static and stable. The compositional diffusivity is 
assumed to be zero and the compositional interfaces sharp, while viscosity and 
thermal diffusivity are finite so that temperature and velocity vary smoothly. 

With the chosen orientation of thermal and compositional gradients and finite 
thermal diffusivity, a hydrostatic state is not possible. Thermal diffusion alters the 
density of the fluid close to  the interfaces, which induces vertical flow, analogous to 
a catabatic wind. This flow and the associated thermal field are referred to  as the 
basic state. For each of the chosen geometries analytic basic-state solutions, 
dependent on a single horizontal coordinate, have been found. 

We wish to determine the stability of the shape of these interfaces, in the presence 
of these basic-state flows, to infinitesimal harmonic perturbations. The stability of a 
single plane interface is considered here in Part 1, while the stability of the other two 
configurations will be detailed in future papers (Parts 2 and 3). 

The present investigation was motivated by a desire to  understand the instability 
of compositionally buoyant plumes rising through a homogeneous, thermally stably 
stratified fluid, as described by Copley et al. (1970). These plumes, which have a 
circular horizontal cross-section, exhibit a helical instability ; see figure 1. We wish to 
gain an understanding and accurate description of this instability. This knowledge 
may be of use in prescribing the flow field within the Earth’s core which sustains the 
geomagnetic field by dynamo action (Loper 1989). 

The geometrically simpler and analytically tractable cases of a single and double 
plane interface will be studied first to  gain insight into the behaviour of the system 
before analysing the cylindrical case numerically. The present study of the stability 
of a single plane interface may also have application to the behaviour of 
oceanographic fronts, although such fronts usually occur on a much larger scale than 
those considered here and result from different dynamic balances (Hsueh & 
Cushman-Roisin 1983 ; Ou 1983 ; Wang 1984 ; Chapman 1986). 

The problem of the stability of the single plane interface studied here shows some 
similarity with the problem posed by a heated rigid vertical wall studied by Gill & 
Davey (1969) and Dudis & Davis (1971). However, the two problems are different 
because of the differing natures of the boundary at the ‘wall ’ a t  x = 0. The rigid wall 
imposes the conditions that the perturbations in velocity and temperature must 
vanish at  x = 0, whereas for the present problem a free boundary at x = 0 requires 
the continuity of velocity, temperature, stress and heat flux. This difference of 
conditions has two implications. First the instabilities isolated for the rigid-wall 
problem are modified by the change to free-boundary conditions. Second, and more 
important, is the appearance of a new type of instability coupled to the deformation 
of the interface. For the free-boundary problem studied here, this new instability is 
preferred at small values of the forcing. We shall therefore restrict the study below 
to this new instability. 

Studies of the heated-wall problem have been confined to two-dimensional 
perturbations, i.e. perturbations which depend on the vertical coordinate and the 
horizontal coordinate normal to the wall, while the analysis below deals with both 
two- and three-dimensional perturbations. This is particularly relevant since the 



Stability of vertical double-diffusive interfaces. Part I 151 

FIGURE 1. Plumes of fresh water emanate from chimneys which form spontaneously within a 
porous matrix of NH,Cl crystals when a warm aqueous solution of ammonium chloride and water 
is cooled from below. The compositionally buoyant plumes exhibit a helical instability. 
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presence of the vertical temperature gradient rules out the applicability of 8quire’s 
theorem for parallel flows, as Gill & Davey (1969) pointed out. Indeed it will be 
shown below that three-dimensional perturbations are preferred for most values of 
the Prandtl number. 

Holyer (1983) has studied another related stability problem in which the medium 
is infinite but there is no discontinuity. The basic state is stationa,ry and has linear 
temperature and salinity gradients in both the vertical and horizontal directions. 
Viscous, thermal and saline diffusions are all included. The resulting perturbation 
equations possess constant coefficients. The instability isolated is basically the same 
as that identified by investigators of the rigid-wall problem but modified by saline 
diffusion and by the absence of the vertical wall. Holyer also examined the nonlinear 
development of the instability. 

It should be noted that the stability problem studied in this paper has some 
similarities to the stability of parallel shear flows, modified by the effects of 
buoyancy. Specifically the present problem may be characterized as a viscous 
parallel-jet flow with an inflexion point, having compositional and thermal buoyancy 
forces acting parallel to the undisturbed interface (see Drazin & Reid 1981). 

This paper is organized as follows. The equations governing the basic-state flow 
and the perturbations are developed in $2. The analytic solutions for the three 
geometries are present in $3, and the heat, material and buoyancy fluxes for each are 
calculated. These exact solutions of the Boussinesq equations are complementary to 
those presented by Howard & Veronis (1987) of arrays of salt fingers. The stability 
of the single plane interface is analysed and discussed in $4, and an energy argument 
is developed to illustrate some of the physics of the new three-dimensional instability 
found in this section. Some final comments are made in $5 concerning the counter- 
intuitive property that plumes have no net mass flux, the growth rate of the 
instability, the mechanics of the three-dimensional instability, and the neglect of 
material diffusivity. 

2. Formulation 
We consider a Boussinesq fluid whose density, p,  depends on both temperature, T ,  

and concentration, C, of a buoyant material. The linearized equation of state for 
density is 

PIP0 = 1-4T-T,)-P(c-Co), (2.1) 

where 01 is the coefficient of thermal expansion, P is the coefficient of compositional 
expansion and a subscript 0 denotes a constant reference value. The fluid has finite 
kinematic viscosity, v, and thermal diffusivity, K, but the material diffusivity is 
assumed to be negligibly small. The equations governing the conservation of mass, 
momentum, energy and buoyant material are 

v - u  = 0, (2.2) 

(2.3) 

(2.4) 

a c / a t + u . v c  = 0, (2.5) 

po[au/at + (u. v )  UI = - v p  +Po mu-Pgz^, 

aT/at + U. VT = KVT, 

where u is the velocity vector, p is the pressure, g is the local acceleration of gravity 
and z  ̂ is an upward unit vector. 
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Localized fluid motions are imposed on a static state characterized by a uniform 
composition, C,, and a uniform temperature gradient 

y = dT/dz. (2.6) 
We shall assume that ay > 0 so that the static state is thermally stably stratified. In 
the discussion we shall implicitly assume a > 0 for ease of interpretation, although 
the analysis is valid for a < 0 as well. Fluid motions will be induced by prescribing 
a difference on concentration of magnitude 6 to fluid elements initially lying on 
either side of a vertical interface. A compensatory difference in temperature of 
magnitude -@?/a is simultaneously imposed far from the interface so that no 
difference in density is imposed. 

The conservation equations may be cast in dimensionless form by choosing 
(vK/ayg)f ,  (KIayvg);, 6, /36(gK/arv)', P6/a and p o / 3 6 ( g 3 v ~ / a y ) f  as measures of length, 
time, compositional difference, velocity, temperature difference and pressure 
difference, respectively. This lengthscale is equivalent to that encountered in the 
salt-finger regime of a double-diffusive system (see equation (8.1.13) of Turner 1973 
and equation (4) of Howard & Veronis 1987). The scalings used here for velocity and 
temperature differ from those of Howard 6 Veronis (1987) by their factor &. Using 
(2.1), the dimensionless forms of (2.2)-(2.5) are 

v . u  = 0, (2.7) 

(2.8) 

a[aT/at+Ru.VT] = V2T, (2.9) 
(2.10) 

au/at+ R(u-V) I( = -V@ +~//?6) + V2u + (C- C, + T- To) 2, 

ac/at + RU. vc = 0, 

where the Prandtl number, u, and the Reynolds number, R, are defined by 

u = V / K ,  R = P6(g~~/a~y~v~)a. (2.11) 

The flow is forced by the compositional jump 6 or, equivalently, the parameter R. 
In what follows we seek to identify the instability which occurs for the smallest 
possible value of R, and shall find a new type of three-dimensional instability which 
occurs for any non-zero value of R. 

In the absence of forcing, (2.7)-(2.10) admit a static solution 

(2.12) 2-2, 2 -2 ,  (z -zo)2  p=p,--++. /3C 2uR 
u = O ,  C = C o ,  T = q + -  

uR ' 

We wish to study the stability of various simple steady solutions of (2.7)-(2.10) 
which are driven by prescribed differences in composition. To that end we shall 
divide the dimensionless variables into a static state, given by (2.12), a steady basic 
state, driven by the forcing and denoted by an overbar, and a perturbation of 
infinitesimal amplitude, 8 ,  denoted by a dagger : 

(2.13) I u = m2+sut, c = c o + c + s c t ,  

T = T, + (Z- z,)/uR + !P+ d'+, 
p = I), - (Z - z0)//3C+ (Z - z ~ ) ~ / ~ u R  + p  + ~ p t .  

In  all cases to be considered the basic state has only a vertical velocity and the basic- 
state variables are independent of height and time. 
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Substitution of (2.13) into (2.7)-(2.10) and expansion in powers of E yields the 
basic-state equations to  order EO and the linearized perturbation equations to  order 
el.  The basic-state equations arc 

0 = -vp+[v2,i8+C+qfilzl, (2.14) 

W=V&T, (2.15) 

where V& = Vz-a2/az2. Note that the two mass conservation equations (2.7) and 
(2.10) are identically satisfied to this order. The perturbation equations are 

v .u t  = 0, (2.16) 

au+/at+~[i8aut/a~+(ut.vi8)fil] = -vp++vw+ (ct+~)z", (2.17) 

a a ~ / a t + a R [ ~ a T t / a z + u + . v ~ + + + . z "  = V ~ F ,  (2.18) 

actlat + RW act/az = 0. (2.19) 

Both the barred and daggered variables are subject to the conditions that values and 
fluxes are continuous and that the variables decay with distance from any localized 
region of forcing (to be specified). 

It is readily seen from (2.14) and p must vary linearly with vertical distance z 
unless 

V&i8+C+T=O0. (2.20) 

Since the fluid far from the interface has been assumed to  be in hydrostatic 
equilibrium, such a variation of p is ruled out and we must assume that (2.20) holds. 
Now p = 0 and the basic state is governed by (2.15) and (2.20), which are to be solved 
for i8 and T ,  once C is prescribed. These two equations may be compactly combined 
into a single second-order complex equation : 

V& Y - iY = iC, (2.21) 

where y = g'--im (2.22) 

(7)). 

- 

and i = 2/ - 1.  Equation (2.21) is equivalent to Howard &Veronis (1987, equation 

3. Some basic-state solutions 
In  this section we present basic-state solutions driven by prescribed compositional 

jumps across three vertical interfaces : a single plane interface, two parallel interfaces 
with equal and opposite jumps (i.e. a Cartesian plume) and a circular cylindrical 
interface (i.e. a cylindrical plume). The last case is believed to  have the greatest 
potential for physical application, but the planar examples are instructive and will 
be presented first. 

3.1. Single plane interface 
To maintain symmetry in the solution, let 

in a Cartesian system of coordinates Oxyz with Oz being vertically upward, Ox 
horizontal and perpendicular to the interface and Oy horizontal along the undisplaced 
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FIQURE 2. The geometry of the single-plane-interface problem. 

interface. There is a (dimensional) jump in composition of unit magnitude at x = 0 
such that the compositionally more buoyant fluid occurs in 5 < 0 and the more dense 
is in 0 < x (see figure 2). 

The basic-state variables @ and T depend only on the coordinate x normal to the 
interface so that Vk = d2/dx2 and (2.21) becomes 

(3.2) iY = -4isgn (x). d2 Y 
dx2 
-- 

The auxiliary conditions are that Y and dY/& are continuous at x = 0 and that Y 
is finite as 1x1 -+ co. The solution of (3.2) satisfying these conditions is 

y =  ~(sgn(x))[l-exp(-klxl)l, (3.3) 

where l + i  k=- 
d.2 

Using (2.22) the vertical velocity and temperature are 

6 

tij = -teap( -$)sin(G), 

(3.4) 

(3.5) 

(3.6) 

FLM 228 
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FIGURE 

0.6 i I I I I 

I 
T 

-0.2 I I I 1 I I 
0 2 4 6 8 

X 

3. The basic-state vertical velocity, a, and temperature, T, plotted versus distance, 2, 
from the interface from the single plane interface. Both are odd functions of x. 

Note that both a and T are odd functions of x. These are plotted versus x for 
0 < x in figure 3. Solutions (3.5) and (3.6) are equivalent to (4.9) and (4.10) of Gill 
(1966), and solutions (8a) and ( 8 b )  of Howard & Veronis (1987) reduce to (3.5) and 
(3.6) in the limit b -+ 00. 

In this configuration the basic-state temperature approaches a non-zero value of 
isgn (2) as 1x1 --+ co. This is necessary to counterbalance the effect of the prescribed 
jump in composition (3.1) and produce identical densities as z-+k co. The flow is 
principally upward for x < 0 where the lighter fluid occurs, as one would expect. The 
dimensional upward mass flux for x < 0 is vR/2 4 2 .  There is a downward flux of 
equal magnitude for 0 c: 2; the net vertical mass flux is zero. 

An unexpected feature of the flow is its oscillatory character with upward motion 
of compositionally dense fluid for (2n-  1) R < 2 / 4 2  < 2nn. This feature is common 
to all basic-state solutions and may be explained as follows. The downward motion 
of dense fluid in 0 < x / 4 2  < R advects warmer fluid from above; the static state has 
(with a > 0) warmer fluid lying above colder. This advection is reflected in the large 
negative gradient dT/dx in this interval. An antisymmetrical upward flow of cold 
fluid in -R < x / 4 2  < 0 maintains the gradient near x = 0 ,  but thermal diffusion 
in the positive-x direction combined with the advection causes the fluid lying in 
n/2 < 2 / 4 2  < 3x12 to be warmer than that a t  x = 00. This warmer buoyant fluid 
tends to rise, with upward flow occurring in R < 2 / 4 2  < 2 ~ .  This upward flow 
advects colder fluid from below and the process repeats with opposite sign and 
diminished amplitude at larger values of x. This oscillatory character of the flow 
adjacent to a single interface is closely related to the tendency of ‘too-wide’ salt 
fingers to split apart, as discussed by Howard & Veronis (1987). 

3.2. Two parallel interfaces 
Let us now suppose that compositionally buoyant (or dense) material occurs within 
a vertical planar region of thickness 22,. Taking the same coordinate system as in 
$3.1, C has the top-hat profile 

1 for 1x1 < zo 
0 for xo < 1x1. 

c={ (3.7) 
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Note that a new dimensionless parameter, xo, has been introduced; it measures the 
thickness of the plume relative to the salt-finger lengthscale, (v/c/ayg)a. 

Again assuming iiI and T depend only on x ,  (2.21) becomes 

i for 1x1 < xo 
dx2 0 for x, < 1x1. iY = -- 

The auxiliary conditions are that Y and dY/dx are continuous at 1x1 = xo and that Y 
is finite as 1x1 -+ 03. The solution of (3.8) satisfying these conditions is: 

exp ( - kx,) cosh ( kx )  - 1 for 1x1 < xo 

- exp (- k ( x ( )  sinh (kx,) for x,, < 1x1. 
Y = {  (3.9) 

Unified real expressions for a and p are 

~ ( x ;  x0) = $[exp ( -X+) sin (X,) - exp ( -  IXJ) sin (X)], (3.10) 

(3.1 1)  

where x, = (lXl)*XrJ)/d2. (3.12) 

Note that Y and hence i i ~  and T are even functions of x .  .is, and T are plotted versus 
x for 0 < x in figure 4 for various values of the plume thickness xo. 

Solutions (3.10) and (3.11) are essentially two solutions of the form (3.5) and (3.6) 
superposed. In the limit x, + 00, they become two separate solutions. An interesting 
feature of the flow is that there is no net vertical mass flux in spite of the positive 
buoyancy perturbation. Upward flow within the plume is balanced by downward 
flow adjacent to it. 

p ( x ;  xo) = 3[exp ( -X+) cos (X,) - 13 - [exp ( -  1X-l) cos (X-) - 13 sgn (X-)}, 

The values of .is, and !i=' on the axis of the plume are 

~ ( 0  ; xo) = exp ( - x 0 / 4 2 )  sin (x0 /1 /2) ,  (3.13) 

T(O ; x,) = exp ( - x0/2 /2)  cos (x,/ d2) - 1.  (3.14) 

These are functionally equivalent to the single-interface solutions (3.5) and (3.6) 
shown in figure 3, the only difference being a doubling of the amplitude. The values 
of these variables a t  the compositional interface, x = xo, are 

.is,(xo;xo) = ~exp(-d2xo)sin(2/2xo),  (3.15) 

22,) cos ( z/2x0) - I ] .  (3.16) T ( x o  ; xo)  = i[exp ( - 

Again, the graphs of these are equivalent to the curves given in figure 3, if the 
horizontal scale is halved. 

3.3. Cylindrical interface 
Now consider compositionally buoyant material within a circular cylindrical surface 
of radius so: 

1 for 0 c s < so c=( 0 for so < s, 

where s is a horizontal radial coordinate. 
Assuming .is, and T depend only on s, (2.21) becomes 

(3.17) 

d2Y dY 
ds2 sds  
-+-- iy = iC. (3.18) 

8-2 
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FIGURE 4. (a) The basic-state vertical velocity, a, and ( b )  temperature, T, plotted versus distance, 
x, from the axis of symmetry of the top-hat Cartesian plume, for values 0.5, 1.0, 2.0, 3.0, 4.0 and 
5.0 of the plume thickness, xo. Note that the graphs of a ( z - x 0 )  and F(z-z,) f0.5 approach those 
of figure 3 as xo increases. 

X 

The auxiliary conditions are that dY/ds = 0 at s = 0, Y and dY/ds are continuous at 
s = so and Y is finite as s --z co. The solution of (3.18) satisfying these conditions is 

Y = {  (3.19) 

where Ber, Bei, Ker and Kei are the usual Kelvin functions (see Abramowitz & 
Stegun 1965, Chapter 9) and a prime denotes differentiation with respect to the 
argument. 

- so[Ker’ (so) + i Kei’ (so)] [Ber ( 8 )  + i Bei (s)] - 1 

- so[Ber’ (so) + i Bei’ (so)] [Ker (s) + i Kei (s)] 

for s < so 

for so < s, 

Using the asymptotic properties of the Kelvin functions for large argument, 

Ber ( z )  + i  Bei ( z )  = Io (kz )  - (2nkz)-iexp ( k z ) ,  

Ker ( z )  + i Kei ( z )  = K,(kz) - ( x / 2 k z ) i  exp ( - kz ) ,  
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it may be verified that (3.19) becomes equivalent to (3.3) in the limit so+ co ; the only 
difference being the factor 8 sgn (s -so) due to the difference in the zero level between 
(3.1) and (3.17). 

The velocity and temperature for this cylindrical plume may be expressed as 

where 

A,  Bei (s) +B, Ber (s) for s < so 

Do Ker (s) + C,  Kei (s) for so < s, 
m(s ; so) = 

/ -A,  Ber (s) +B, Bei (s) - 1 for s < so, 
n s :  s,) = , " l  

I - C,  Ker (s) +Do Kei (s) for so < s, 

I A ,  = s,Ker' (so), 

C, = so Ber' (so), 

B, = so Kei' (so), 

Do = so Bei' (so). 

(3.20) 

(3.21) 

(3.22) 

The graphs of m and T versus s for several values of so are given in figure 5. 

3.4. Heat, material and buoyancy Jluxes 
Following Howard & Veronis (1987 ; hereinafter referred to as H&V), we may define 
fluxes of heat, material and buoyancy per unit length of interface : 

F -- w T d A ,  F m = -  w C U ,  FB=dH+PFm, (3.23) 

where the integrals are taken over a specified horizontal area and L is a measure of 
the horizontal length of the interface. (Since C here is a measure of buoyant material 
whereas s is a measure of dense material in H&V, there is a sign difference between 
the definition of the buoyancy flux in (3.23) and that used by H&V. Also the fluxes 
of these isolated interfaces are normalized by horizontal length of interface rather 
than area as in H&V.) Non-dimensionalizing these fluxes with P26'(g~' /va3y3)f ,  
/ 3 @ ( g a ~ ~ / v y ~ ) ~  and P262(ga~3/"y3)f, respectively, and noting that by conservation of 
mass the vertical advection of the static state produces no flux, we may write 

H - L  's L '1 

p -- mTdA, Pm=-  mcdA, PB=&+Pm. 
H - L  'I L 'I 

For a single plane interface, we have 

(3.24) 

(3.25) 
J-w J -m 

with 6, t~ and T given by (3.1), (3.5) and (3.6). These integrals yield 
I - 
F H - - - " d 2 ,  16 F, = PB = & 4 2 .  (3.26) 

The flux ratio, F,, for the single interface is - -  
F,. = - FJF, = 4. (3.27) 

For a top-hat Cartesian plume, we must integrate 

(3.28) 
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FIGURE 5. ( a )  The basic-state vertical velocity, a, and (6) temperature, T, plotted 
s, for values 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 of the radius, so, of the cylindrical plume. 
graphs of a ( s - s o )  and T(s-so)  +0.5 approach those of figure 3 as so increases. 

versus radius, 
Note that the 

where the factor of 
Integration of (3.28) with C, m and T given by (3.7), (3.10) and (3.11) yields 

occurs because there are two interfaces per unit length. 

and 
3 sin ( 1/2x,) 
4 4[exp (Z/Zx,) - cos ( 1/22,) - sin (d22,)] 

F, = -+ (3.30) 

pB and F, are plotted versus x,, in figure 6. fB has local minima a t  1/22, = arctan) 
+ 2n7t and local maxima at 1/2x, = arctan + + (2n + 1) K, for n = 0,1,2,  . . . . The 
largest of these maxima is that  for n = 0, giving xo = 2.449 and PB = 0.09277 and 
F, = 0.7476. The buoyancy flux per unit area, PB/xo, is also plotted in figure 6 as a 
dashed line ; this corresponds to the normalization of H&V. This flux has a maximum 
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FIQURE 7. The buoyancy flux, pB, and flux ratio 4 = fH/pmior  the cylindrical plume plotted 
versus plume radius, so. The area-normalized buoyancy flux, 2FB/so, is plotted aa a dashed curve. 
Note that the buoyancy flux approaches the value of that for the single plane interface (see (3.26)) 
as so becomes large. 

of 0.05066 at xo = 1.445. The corresponding flux ratio is 0.7806. The area-averaged 
buoyancy flux is introduced here for comparison with H&V ; it is believed that the 
buoyancy flux i”, is the proper measure of the robustness of the isolated plume. The 
curves in figure 6 may be compared with those for the planar array in figure 3 of 
H&V, where xo = 1/2xb. 
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Plume type Thicknesst Buoyancy flux$ Flux ratio 
Single plane - 0.088388 0.750 
Double plane 2.449 0.092 766 0.7476 
Plane array 2.404 0.135 0.251 
Square array 3.479 0.117 0.256 
Cylindrical 1.7595 0.1258 0.5349 

t In units ofL (vK/gay)f. 
$ In units of $CaK/ayLk with k = 1 for isolated plumes and 2 for arrays. 

TABLE 1. Comparison of optimal thickness, which maximizes the buoyancy flux, for several 
configurations of salt fingers. The flux ratio at optimum is also tabulated. 

Note that pB for the Cartesian plume is negative for xo < 0.5183. This strongly 
suggests that such narrow isolated planar plumes cannot exist. This in contrast to 
the case of a planar array where the buoyancy flux is positive for all values of finger 
width; see figure 3 of H&V. The negative buoyancy flux results from a quadratic 
variation of the positive pm for small xo, whereas the negative pH varies linearly. The 
flux ratio for the Cartesian plume is typically larger than a (and larger than 1 for 
small xo), in contrast to that of the planar array which is typically less than a. This 
indicates that isolated planar plumes are not robust features. This lack of robustness 
is also indicated by the broad maximum in pB seen in figure 6, and in the fact that 
the optimal buoyancy flux for the planar plume is only slightly larger than that for 
a single plane interface and significantly less than that for a planar array. 

To calculate the fluxes for a top-hat cylindrical plume, we must integrate 

(3.31) 

where iO and T are given by (3.20) and (3.21). Using equations (9.9.21), (9.9.26) and 
(9.9.27) of Abramowitz & Stegun (1965), these integrals yields 

- BODo-AoCo F, = , 
SO 

pH = -pm-&,,(Ai-Bi) Ber (so) Bei (so) -~.soAoBo(Berz (so) -Bei2 (so)) 

(3.32) 

+!jso(Ci-Di) Ker (so) Kei (so) ++soCoDo(Ker2 (so)-Kei2 (so)). (3.33) 

The fluxes pB and F, are plotted in figure 7. pB reaches a maximum of 0.1258 for 
so = 1.759; F, = 0.5349 a t  that radius. The area-normalized flux 2jB/s0 is plotted 
in figure 7 as a dashed line. This flux attains a maximum of 0.1760 a t  so = 1.134; 
F, = 0.3782 at  that radius. Comparison of figure 7 with figure 6 shows that the 
cylindrical plume is much more robust than the Cartesian plume ; the flux ratio tends 
to zero rather than infinity for a small plume and the maximum of buoyancy flux is 
significantly larger than the asymptotic value. 

A comparison of the optimal thicknesses, optimized buoyancy fluxes and flux ratios 
for a Cartesian plume, a plane array, a square array and a cylindrical plume are 
presented in table 1 ; values for the middle two taken from H&V. The values of FB 
and F, for the single interface are included for comparison. The principal difference 
between these cases is that the isolated interfaces are characterized by relatively 
large values of the flux ratio whereas the arrays have much smaller optimal values. 
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A large value of the flux ratio indicates that the negative heat flux is relatively strong 
and tends to reduce the overall buoyancy flux. Evidently the counterflow in an array 
acts to severely reduce the heat flux and make the action of an array more efficient 
than an isolated plume. 

4. Stability of the single plane interface 
In this section we consider the linear stability of the simplest of the basic-state 

solutions presented in $3 : that for the single plane interface given by (3.5) and (3.6). 
Specifically we consider the stability of the flow to infinitesimal harmonic 
perturbations in the position of the interface initially at x = 0. Let the deformed 
interface occur at 

x = ~ ( y ,  z,  t) = sexp [i(my + nz) + Qt)] + C.C. ; (4.1) 
see figure 2. We shall assume that the perturbation velocity, pressure, temperature 
and composition have the same harmonic variation in y, z,  and t ;  let 

( 4 4  {ut,pt, Tt, Ct} = {iu, v, w, inp, T, c) exp [i(my + nz) +at)] + C.C. 

In  writing (4.2) we have introduced the imaginary unit in the definitions of the 
pressure and the 2-component of velocity in order to simplify the complex character 
of the variables. 

With (4.2), the perturbation equations (2.16)-(2.19) become 

duldx + mv + nw = 0, (4.3) 
(d2/dx2-u2-8)u = ndp/dx, (4-4) 
(d2/dx2 - u2 - 52) v = - mnp, (4.5) 

(d2/dx2 - a2 - 8) w - iR(m)'u + C + T = - n2p, (4.6) 

(d2/dx2-u2-d)  T-icrR(P)'u-w = 0, (4.7) 
szc = 0, (4.8) 

where 8 = Q + inRm(x) (4.9) 

- 

is the Doppler-shifted frequency, 
a2 = m2 + n2 (4.10) 

is the square of the wavenumber in the (y,z)-plane and a prime indicates 
differentiation of the basic-state variable with respect to x. Since 8 is a function of 
x, through its dependence on @, and does not vanish everywhere, it follows from (4.8) 
that 

c=o. (4.11) 

Equations (4.3)-(4.7) are to be solved subject to the condition that all perturbation 
variables decay to zero as x +. f 00 (or satisfy the appropriate radiation conditions). 
Also the variables and their derivatives must satisfy certain compatibility conditions 
across the interface described by (4.1). These conditions arise from the requirement 
that the interface be a material surface and that the full variables and the fluxes of 
momentum and heat be continuous across the interface. Using (4.3) and continuity 
of velocity, it may be shown that continuity of momentum flux normal to the 
interface reduces simply to continuity of pressure. Since the basic-state vertical 
velocity (3.5) has a discontinuous second derivative at  x = 0, the perturbation 
vertical velocity must have an offsetting discontinuity in its first derivative. This has 
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the effect of making the scaled perturbation problem non-homogeneous. The details 
of the development of this condition are given in Appendix A ;  the full set of auxiliary 
conditions is 

u, v, w, p and T decay to zero as 1x1 + 00, (4 .12~)  

u, v, w, p, T, dvldx and dT/dx are continuous at x = 0, (4.12 b) 
(i) 
(ii) 
(iii) 

(iv) 

(dw/dx),,,- = (dw/dx),-,+ + 1, 
Ru=- i f i  at  x=O.  

(4.12~) 
(4.12d) 

The factor R appears in the fourth condition because the velocity has not been scaled 
as length divided by time. 

The set of equations (4.3)-(4.7) appears to describe four evolution modes since the 
parameter 52 appears four times. However, it is easily shown that there are in fact 
only three modes by operating on (4.3) with (d2/dx2-a2-fi) and making use of 
(4.4)-(4.6) to obtain 

(d2/dx2-a2)p-T+2iR(m)'u = 0. (4.13) 

This may be used in place of (4.4). The frequency appears only three times in the set 
(4.3), (4.5)-(4.7) and (4.13). If we put v and m equal to zero in this set of equations, 
it reduces to (2.1) and (2.2) of Gill & Davey (1969), but the two sets of equations are 
subject to differing boundary conditions. 

Before proceeding to solve the stability problem, let us examine the stability of the 
system when the basic compositional jump is absent, i.e. when 6 = 0. In this case 
there is no distinction between the fluid on either side of the plane x = 0. The fluid 
has a bottom-heavy density profile due to the static-state (a! = 0) temperature 
gradient. Since 6 has been used in the non-dimensionalization of the perturbation 
equations (2.7)-(2.10), we will revert to dimensional quantities here and assume that 
the x-dependence is exp (irx) since the perturbation equations have constant 
coefficients in this limit. The dispersion relation then is 

( vh2 + 52) [ ( vh2 + 52) ( ~ h ~  + 52) h2 + ayg(r2 + m2)]  = 0, (4.14) 

in which h2 = a2+r2 .  The solutions are 

(4.15) 

It is readily seen that the real part of 52 is negative for all three modes, indicating 
stability. 

This conclusion rests on the presumption that r2 is positive ; that is, the system is 
stable to body waves. However, in what follows we are interested in edge waves 
which decay with distance from the interface at  x = 0. These waves are characterized 
by negative values of r2.  Of particular interest is the case in which both R and 52 are 
small and the edge waves satisfy a2 = h2 or 

(A2  - a2)3 + A2 - m2 = 0, (4.16) 

It follows from the fourth of conditions (4.12) that 52 is no larger than O(R) when 
to dominant order, where we have replaced r2 by - A 2 .  

R < 1. The expansion in ascending powers of R has the form 
m m 
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In what follows we shall consider a sequence of problems in ascending powers of R 
in an effort to determine the conditions under which the single plane interface is 
unstable. 

4.1. The zeroth-order problem 
The zeroth-order problem consists of (4.3), (4.5)-(4.7) and (4.13), with 0 and the 
terms containing R and C omitted, subject to  conditions (4.12). As explained in 
Appendix B, the solution may be expressed as 

3 

{ ~ o > ~ O > w o i p , ,  T,) = C. {-nhjsgn(x), - m n , ~ ~ ~ ~ ~ ~ , ~ } A ~ e x ~ ( - ~ ~ l ~ l ) ,  (4.18) 
5-1 

where A .  = P; 
2h5(3n2 + 2pj) ’ 

(4.19) 

pi=h;-a  2 , (4.20) 

and ,u;+,u5+n2 = 0. (4.21) 

Note that (4.21) is equivalent to  (4.16). Also 
3 3 3 

C h 5 A i = 0 ,  2p.3h5A,=$, C p ; h 5 A , = O 3  
5-1 5-1 5-1 

so that u, dv/dx and dT/dx are continuous a t  x = 0 and the jump in dw/dx is unity 
as required by (4.12). Also note that 

52, = 0. (4.22) 

To this order the perturbation is neutrally stable, and in fact stationary, for all 
values of m, n and u. These zeroth-order modes are the neutral distortion of the basic- 
state flow which necessarily accompanies the displacement of the interface. 

This neutral stability to  first order is reminiscent of that for u = co found by Gill 
& Uavey (1969), although there is an important difference. Here the neutral first- 
order mode is stationary whereas that of Gill & Davey (1969) moves with a phase 
speed greater than the maximum fluid speed. 

It is easy to verify that each of the zeroth-order variables given by (4.18) is real, 
since one of the three modes, p, is real while the other two are complex conjugates. 
Also note that uo is an odd function of x, while the other four variables are even in 

The stability of the single plane interface is determined by investigating the first- 
2. 

order perturbations of this neutral distortion. 

4.2, The Jirst-order problem 
To first order in powers of R, (4.3), (4.5)-(4.7) and (4.13) become 

(d2/dx2 -a2)pl - T, = - 2i(@’u0, 

(d2/dx2 - a z )  w1 + T, + nzpl = in@wo + i(a)‘uo, 

(d2/dx2 - a2) T, - w1 = incrmq + in(T)’u0, 

(d2/dx2-a2) v1 = -mnp, +inmu,, 

dul/dx = - mu, - nw,. 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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The solutions of these equations are subject to the continuity conditions 

I .  A .  Eltayeb and D. E .  Loper 

(4.28) 
w1(0-) = W l ( O + ) ,  P,(O-) = Pl(O+), T,(O-) = T , ( O + ) ,  

- ( O - )  dw1 = - ( O + ) ,  dw1 - ( O - )  dT, = - ( O + ) ,  dT, 
dx dx dx dx 

V1(O-) = V , ( O + ) ,  % ( O - )  = - ( O + ) ,  dv1 u,(O-) = ul(O+) = -i52,. (4.29) 

The last of these serves as the dispersion relation for a,, once the other conditions 
are satisfied. 

The solution of this problem, given in Appendix B, results in a dispersion relation 
which is linear in the Prandtl number u: 

(4.30) 

dx dx 

52, = co + UC1, 

where 

for r = 0,1 ,  where 

and Qr = - i z 1 m [ 2 ~ j y r j ] .  3 

f o r y = u , v , w , p , T , a n d r = O , l , w i t h  

and 

(4.31) 

(4.32) 

(4.33) 

(4.35) 

where Dj = yj+yj+n2, y j  = (hj+k)2-a2. (4.37) 

4.3. Stability results and discussion 
The expression (4.30) for 52, has been evaluated numerically as a function of the 
wavenumber components m and n for positive values of the Prandtl number, u. 
The computations show that the single plane interface is unstable for all values of the 
Prandtl number in the sense that for every value of u there exists a pair of values 
(m, n) for which 52, is positive. Naturally some disturbances are damped. In  particular 
when n is large, and the wavelength in the vertical direction ( =  2 x / n )  is short, the 
disturbance is heavily damped by viscous dissipation. Indeed (4.30) yields 

n2m2 13 +- as n+m. 6 4 4 2 a  

We see from this that short wavelength two-dimensional motions (in vertical planes 
normal to the plane of discontinuity, having m = 0) are unstable, while three- 
dimensional motions with similar short vertical wavelength are stable. 

For m, n < O( l ) ,  however, 52, is positive for all m and n ( + 0 ) ,  provided u does not 
exceed a certain value (T, ( x  1.472). For > u,, a region of stability develops in the 
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FIGURE 9. The regions of stability for the single plane interface in the (m, n) wavenumber plane for 
various values of the Prandtl number u, as labelled. The region of stability lies within the respective 
curve and instability prevails outside. No stability is possible if u < 1.472. 

(m, n)-plane for small values of m and moderate values of n. The development of this 
region of stability is illustrated in figure 8 which shows the profile of the growth rate 
a, as a function of n for m = 0 and values of u near the 'critical' value uc. For fixed 
m and u = 0, SZ,(n) is positive and has a single maximum a t  moderate values of n. As 
u is increased from zero, a second maximum develops a t  a smaller value of n. The 
intervening minimum value of SZ, decreases with increasing u but remains positive 
provided cr < uc. When u exceeds uc, the minimum value of SZ, is negative, giving a 
region of stability for some values of m and n. Further increase in the value of cr 
results in an enlargement of the stable region, as illustrated in figure 9. The presence 
of the stable region for moderate values of m and n complicates the isolines of $2, as 
depicted in figure 10. 
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FIGURE 10(a,b).  For caption see facing page. 

The increase in the region of stability with increasing u is due to  the stabilizing 
influence of viscosity, which can be investigated by studying the behaviour of the 
growth factors co and c1 in the (m, n)-plane. Noting that u = v / K ,  we may interpret 
c,, as representing the effect of thermal diffusivity while c1 represents viscosity. 
Numerical evaluation of the expression (4.31) for r = 0, 1 leads to the isoline plots 
shown in figure l l ( a ,  b) .  It may be seen from this figure that thermal diffusivity 
promotes instability for all wavenumbers while viscosity is nearly always stabilizing ; 
c,, is positive for all values of m and n, while c1 is negative except for n small and m 
between 0 and 1 .  c1 has a maximum of 0.304901 x lop4 at  m x 0.4971 and n x 0.2307. 

The mode of primary concern in stability theory is that for which the growth rate 
a, is a maximum. This mode, called the preferred mode of instability, is identified as 
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FIQURE 10. Isolines of the growth rate, a,, for the single plane interface for four representative 
values of the Prandtl number g: (a) c = 1.0 (minimum value 0, maximum value 0.00570, contour 
interval 0.0005) ; ( b )  u = 3.0 (minimum value -0.00580, maximum value 0.00448, contour interval 
0.0005); (c) = 5.0 (minimum value -0.0139, maximum value 0.00394, contour interval 0.001); 
( d )  u = 10.0 (minimum value -0.0345, maximum value 0.00336, contour interval 0.0025). 

follows. The stationary values of Q2 as a function of m and n are determined by 
solving the equations 

a8,lam = aQ,/an = 0, 

and (4.31) simultaneously for fixed a. The preferred mode has the largest stationary 
value, G!,,,,, of 8,. 82max and the associated values, mmax and nmax, of m and n 
define the preferred mode of instability for that given value of u. The variation of the 
preferred mode as a function of u is illustrated in figure 12. We see that two- 
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FIGURE 11. Isoline plots of (a) co and ( b )  c1 on the (m,n) wavenumber plane 
interface. Contour intervals are 0.0005. Minimum value of co is 0, maximum 
minimum value of c1 is -0.00414, maximum value is 0.0000305. 

for the single line 
value is 0.00758; 

dimensional motions (i.e. those for which m = 0 )  are preferred only for very small 
values of the Prandtl number, i.e. for cr < 0.065. As cr increases beyond 0.065, 
mmax(cr) increases rapidly with cr until cr reaches about 0.5 and thereafter increases 
very slowly with CT. On the other hand, nmax increases with cr for two-dimensional 
motions but decreases with cr for three-dimensional motions. In  cases where more 
than one maximum of SZ, occurs, that with the smallest value of nmax is always the 
largest, reflecting the dissipative role of viscosity. The maximum growth rate, SEPmax, 
decreases with cr for values of cr < ( x  21.93), while for cr > go, Q,,, increases 
slowly with cr. (Similar behaviour was encountered by Gill & Davey (1969) who found 
that the critical Reynolds number decreases with increasing Prandtl number.) This 
decrease is due to the increasing influence of the basic-state horizontal gradients of 
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temperature and velocity. As u increases, the vertical wavenumber nmax decreases 
(i.e. the vertical wavelength increases) in order to minimize the influence of viscous 
dissipation, thereby allowing the transfer of energy by the basic-state gradients to 
offset it and in turn enhance instability. 

The present result that three-dimensional motions (i.e. rn 9 0) are preferred for 
almost all values of the Prandtl number, u, presents a divergence from the results of 
Holyer (1983). However, the problem studied by Holyer differs from the present 
problem in two important respects. First, the absence in her problem of a horizontal 
gradient of vertical velocity rules out any influence of velocity shear. Second, the 
inclusion of material diffusivity in her problem has the effect of increasing dissipative 
processes. 

4.4. Energetics of the instability 
In order to identify the driving mechanism for the present instability and clarify the 
differences with the results of the studies by Gill & Davey (1969), Dudis & Davis 
(1971) and Holyer (1983), we examine the energetics of the present problem. 

The kinetic energy balance is obtained by multiplying (4.4) by u* (here an asterisk 
denotes a complex conjugate), (4.5) by v*, (4.6) by w* and the conjugate of (4.3) by 
-np, adding the results and integrating over the range of x (and noting that C = 0). 
Separating the result into real and imaginary parts yields 

( 4 . 3 8 ~ )  
(4.383) 

Re (52) EM = -DM +R Re (M) + Re (B + J ) ,  
Im (Q) EM = -&E,, +R Im (N) + Im (B+ J ) ,  

00 

E,, = I-, mlu12 dx, (4.39) 

1, B = ~ ~ , W * m x . \  
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The first term in (4.38) represents the rate of change of wave kinetic energy, DM 
represents the rate of viscous dissipation, M the rate of transfer of kinetic energy 
from the mean flow through the velocity shear, and B and J the rates of gain of wave 
energy by the actions of buoyancy. B represents the action of thermal buoyancy 
while J represents the action of compositional buoyancy resulting from the 
deformation of the interface. Note that Re (52) E M ,  D,, R Re (M)  and B in ( 4 . 3 8 ~ )  are 
equivalent to a R c ,  E M ,  D M ,  RIM and B of equation (2.6) of Gill & Davey (1969), but 
there is no counterpart to J in their problem. Note that for the scaling adopted in this 
paper, the jump in dwldx is unity so that J = w*(O). 

The thermal energy balance is obtained by multiplying the conjugate of (4.7) by 
T. The real and imaginary parts are 

a Re (a) E ,  = - D ,  + aR Re ( H )  - Re (B) ,  (4.40 a) 

(4.40b) - a I m  (52) E ,  = naRE,, + uR Im ( H )  - Im (B) ,  

1 (4.41) 

Here E ,  represents the gain of wave potential energy, D, the rate of thermal 
dissipation and H the rate of transfer of energy from the basic-state thermal profile 
to the perturbations. The terms of (4.40a) exactly correspond to those of (2.8) of Gill 
& Davey (1969). 

The addition of ( 4 . 4 0 ~ )  to (4.38a) and (4.40b) to (4.34b) leads to 

Re (a) [EM +aE,] = - (DM +D,) +R  Re ( M +  a H )  + Re ( J ) ,  ( 4 . 4 2 ~ )  

Im (a) [E,-aE,] = nR(E,,-E,,)+RIm(M+aH)+Im(J). (4.42b) 

Equations ( 4 . 4 2 ~ )  and (4.42b) show clearly the influence of the discontinuity in the 
basic compositional concentration, as represented by J ,  on the growth rate Re (B) 
and on the frequency Im (52). If J = 0 (and the basic compositional concentration is 
continuous everywhere), then by (4.42a), Re (a)  is negative unless Re (M+ a H )  > 0 
and R is sufficiently large to overcome the effects of dissipation. In  this case, 
instability is similar to  that of the heated-wall problem cited previously. Of course, 
the values of R giving instability will not be identical with those of the heated-wall 
problem because the boundary conditions are different ; studies of the stability of 
double-diffusive systems indicate that changes in boundary conditions are, in 
general, accompanied by only quantitative changes in the stability properties (see, 
for example, Eltayeb 1972). 

If J =l= 0, then (4.42a) shows that this new term has the capability of balancing the 
effects of diffusion even as R --f 0. The analysis presented in this paper shows that to  
order Ro (for small R )  the energy released by deformation of the interface exactly 
compensates the effects of dissipation : 

0 = -(DMo+DTo)+w,*(O). (4.43) 

Although the variables do not possess general symmetries with respect to x, since 52 
is zero to order R' and R1, the zeroth- and first-order velocities do have symmetries 
about x = 0. In  particular, uo and u, have opposite symmetries so that the dissipative 
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terms DM and DT are zero to order R.  Also with m, T and uo odd and vo, wo and T, 
even about x = 0, M and H are zero to order RO. Consequently, ( 4 . 4 2 ~ )  is to  order R, 
simply 

which is consistent with w1 being an odd function of x.  To order R2, ( 4 . 4 2 ~ )  yields 

0 = Wl*(O), (4.44) 

Re (a,) [ E M , +  VETO] = - ( D M ~  +DT, )  + Re (Mi -I- VH1-t W z ( O ) ) .  (4 .45)  

This shows that the effects of thermal and viscous dissipation may be overcome by 
a combination of kinetic energy transfer, viaM,, thermal energy transfer, via H I ,  and 
compositional energy transfer, via w:. 

5. Final comments 

features which deserve further comment and clarification. 
The flow problem studied in the preceding sections has a number of unexpected 

5.1.  Vertical mass flux 
One counter-intuitive property of the three basic-state plume solutions found in 53 
is that they each have no net vertical mass flux. Intuitively one would expect a 
buoyant plume to have a positive vertical mass flux with the return flow at  some 
distance from the plume. That is not the case with the compositionally buoyant 
plumes studied here. This fact may be verified by integration of (2 .15)  over the 
horizontal area of the plume. The single-line interface has no net vertical mass flux 
by symmetry. The mass fluxes of the top-hat Cartesian and cylindrical plumes may 
be expressed as 

Mk = rkm dr  = ( rkc ) , .  dr = r k q ,  

where k = 0 for the Cartesian plume and 1 for the cylindrical plume. In  either case, 
the vertical mass flux, a t  an arbitrary distance from the symmetry axis, is directly 
proportional to the local radial gradient of the basic temperature profile. This 
gradient must tend to  zero as the distance from the plume axis becomes large. 
Consequently the net vertical mass flux must be zero. 

There is no denying that near the axis of the plume a concentrated upward flow 
of compositionally buoyant fluid occurs. However, the downward return flow does 
not occur at very large distances, but instead occurs close to  the plume. In  fact, this 
return flow is an integral part of the dynamics of the plume. The upward flow near 
the centre of the plume advects cold fluid from below since the static state is 
thermally stably stratified. Horizontal diffusion of heat allows this central column of 
cold buoyant fluid to cool the surrounding fluid which is not compositionally 
buoyant. This cool dense fluid sinks, contributing substantially to the downward 
mass flux. This sinking collar of cool fluid drags with it some warmer fluid farther 
from the plume. This warmer fluid warms the fluid still further from the plume, 
creating a second weaker updraft, and so on, as described a t  the end of $3.1. 

I s :  

5.2.  Growth rate of instability 
The flow which has been studied in the preceding sections is forced by the imposed 
compositional difference, quantified by the dimensionless parameter R .  I n  keeping 
with the tradition of stability analyses, attention has been focused on the instability 
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that occurs for the smallest possible value of the forcing R. It was found that, in 
contrast to the heated-wall problem where instability is possible only if R exceeds 
some finite critical value R,, in the present problem instability of the single plane 
interface is possible for any non-zero value of the forcing. Although the flow is 
unstable even as R+O, the timescale for growth of the instability tends to infinity 
in this limit ; in dimensional terms, this timescale ( K l /QJ is 

7 =  - _- [ (:;) J2 ; :. 

Consequently there is no paradox of having an instability persist as the strength of 
the forcing goes to zero. 

The basic flow of the single interface may be characterized as a viscous parallel jet 
influenced by buoyancy forces. Consequently, the stability of this flow has some 
similarities with the Kelvin-Helmholz problem. In particular the two problems have 
the property that the flow is unstable for a wide range of wavenumbers. One 
important difference is that  the growth rate of the instability in the present problem 
is much longer than that in the Kelvin-Helmholz problem. The timescale for the 
growth of the instability in the Kelvin-Helmholz problem is (see Batchelor 1967, p. 
516) LIU, where L is the width of the jet and U is the speed. In  the present case, the 
growth rate is LIRU, where R is a small parameter, giving a much slower growth rate. 
This decrease in the rate of growth may be due to the action of the buoyancy forces 
parallel to the undisturbed interface. 

5.3. Mechanics of three-dimensional instability 
An unexpected feature of the instability found in the preceding sections is that, 
except for very small values of the Prandtl number, the most unstable mode has 
variation in the cross-flow direction, i.e. horizontally along the int.erface (m += 0). To 
understand this feature, we first note that the basic flow is driven by buoyancy 
differences created by thermal diffusion across the compositional interface, and 
retarded by viscosity. Consequently, as was noted in $4.3, the effects of thermal 
diffusion are nearly always destabilizing and those of viscosity are nearly always 
stabilizing. 

As discussed in $3.4, the strength of the buoyancy flux is a measure of the vigour 
of the flow. The presence of cross-flow variation in the shape of the interface has the 
effect of increasing the buoyancy flux. To quantify this, consider the change 
buoyancy flux due to  the zeroth-order neutral mode found in $4.1. To order R’, 
wt = ~ ( y ,  z ) f ( x )  and Tt = ~ ( y ,  z )  g(z) where 7 = 26 cos (my + n z ) ,  

3 

fW = x /$A, exp ( - +4 1 
j-1 

and 

The modified flux integrals are defined by 

4.I = (/-aa (m+wt) (!F+P)dz), & = ( /, (m+wt)Cdz), 

where the angular brackets denote average over y and z. Noting that i i j  and T are odd 
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0 1.5 
m 

FIGURE 13. Isoline plot of the modified buoyancy flux, G, on the (m, n )  wavenumber plane, taking 
into account the neutral deformation of the interface. This plot demonstrates that the flux is 
enhanced if the interface has variation in the cross-stream direction; i.e. if m 8 0. The maximum 
value of G is 0.288; the contour interval is 0.025. 

in x, f and g are (real and) even in x, and C = -isgn (x-q), these integrals may be 
expressed as 

where a subscript 0 denotes the values for the undisplaced interface. Now 
a+qf x - (ix 1/2) + q f ( O )  for small x and ( q 2 )  = 2e2, so that 

and 

The buoyancy flux is the sum of these: 

p’-pBo = c2G(m, n) 

where 

The isoline plot of G on the (m, n)-plane shown in figure 13 demonstrates that the 
buoyancy flux is enhanced if m + 0,  and in fact reaches a maximum of 0.288 when 
m = 1.07 and n = 0. 

5.4. Effect of material diffusivity 
The analysis presented in the preceding sections is aimed at describing the stability 
of the cylindrical plumes shown emanating from chimneys in a porous matrix in 
figure 1.  The problem of describing the flow within the matrix and chimneys has not 
yet been solved satisfactorily, in spite of several attempts (Roberts & Loper 1983; 
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Fowler 1985). Consequently, the compositional distribution within a plume as it 
leaves the crystal matrix is not known. We have modelled a uniform distribution 
with a sharp interface for all three configurations : single plane interface, two  parallel 
interfaces and the cylindrical plume, with the hope that this will capture the essence 
of the stability even if the actual distribution is not uniform. 

Material diffusion will act to broaden an initially sharp interface. Consequently the 
analysis of the preceding sections, which ignores material diffusivity, cannot be 
uniformly valid. Specifically, material diffusion limits the vertical extent of the 
interface; see Howard & Veronis (1987). This vertical extent can be estimated as 
follows. 

The plume thickness, so, is determined by the salt-finger scale : 

So X ( V K / a y g ) f ,  (5.1) 

whereas the lateral extent, As ,  of the diffusing compositional interface is given by 

A s  x ( D T ) ~ ,  (5.2) 
where D is the material diffusivity and r is the time the interface has been diffusing. 
The analysis of the preceding sections should remain valid provided 

As -4 so. (5.3) 
The time 7 may be thought of as a residence time, related to the vertical extent, 

h, of the plume and the velocity of rise, w, by 

r x hlw. 
The vertical velocity is scaled by 

(5.4) 

W X p(?(fJK/OIyV):. (5.5) 
Combining (5.1)-(5.5), we obtain a constraint on the vertical extent of the plume 

Noting that = ( A p ) J p 0  and ayh = ( A p ) T / p O ,  where ( A P ) ~  is the density contrast 
induced by the compositional jump and ( A P ) ~  is the density contrast induced by the 
vertical temperature contrast resulting from the imposed stable temperature 
gradient, (5.6) can be rewritten as 

(5.7) 

This is equivalent to condition (29) in Howard & Veronis (1987). 
Commonly, thermal diffusivity is much larger than molecular compositional 

diffusivity so that the right-hand side of (5.7) is large. Also the compositionally 
induced density contrast is normally a t  least as large as the thermally induced 
contrast, particularly in the experiments depicted in figure 1. Therefore, condition 
(5.7) is often easily satisfied and material diffusivity may be ignored in studying the 
stability of isolated sharp interfaces. 

This work was supported in part by grants EAR-8520678 and EAR-8805349 from 
the Earth Sciences Section of the National Science Foundation. This is publication 
no. 31 1 of the Geophysical Fluid Dynamics Institute, Florida, State University, 
Tallahassee, Florida. 
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Appendix A. Jump conditions on the vertical velocity 
The exact boundary conditions on the vertical velocity are that a t  x = r ]  

w (? / - , y , z , t )  = W ( r ] + , Y , Z , t ) ,  I 
-(?/ au -, y ,  2 ,  t )  + - ( r ] - ,  aw y ,  z ,  t )  = au -(?/+ 9 Y ,  2 ,  t )  +- aw (?/+ Y3Z>t). aZ ax aZ ax 

The latter condition follows from continuity of stress. By Taylor expansion, 

If we assume that 
w(x ,  y ,  z,  t )  = m(x) + EWt(X, y ,  z ,  t ) ,  

u(x, y ,  z, t )  = ieut(x, y ,  z,  t )  
(A 2) becomes 

dw 
dx w ( r ] f ,  y ,  2 ,  t )  = a(o*)+ewt(O_+,  y ,  2, t )  +r]-(Of ) + ..., 

aw dm awf d2m 
- (7 f > Y ,  2, t )  = - ( O f )  +€-- (Of  , y, 2 ,  t )  + r ]  - ( O + )  + ... . ax dx ax dx2 

We know that a and dm/dx are continuous at  x = 0, so that the boundary conditions 
may be expressed as 

wf(O-) = Wt(O+), 

d2m 1) ( A s )  
dx 

aut awt au+ awt 
is- (0-) + e- (0-) = ie- (0+ ) + E- (0 + ) + 7 (0+ ) -? (0- ) aZ ax az 8X 

Since the x-component of velocity is continuous at  the interface, its derivative along 
the interface is also continuous : aut/az(O- ) = aut/az(O + ). 

Using standard pill-box arguments, the relevant terms of (2.20) are 

d2m - -+c= 0. 
dx2 

From this it follows that 

d2m d2m 
dx2 dx2 
- (0 - ) - - (0 + ) = C(0 + ) - C(0 - ), 

giving 
dwt dwt 
dx dx 

wt(O-) = wt(O+), s - ( O - )  = e - ( O + ) + ? / [ C ( O - ) - C ( O + ) ] .  (A 7) 

For the single-line plume, C(0 - ) - C(0 + ) = 1.  Assuming that 7 and wt are given by 
(4.1) and (4.2), (A 7 )  yields (4 .12~) .  



178 I .  A .  Eltayeb and D .  E .  Loper 

Appendix B. Solution of the single-plane-interface problem 

to conditions (4.12). It is instructive to  write the equations as 
In  this appendix we shall derive the solution of (4.3), (4.5)-(4.7) and (4.13) subject 

(d2/dX2-a2)p-T = -2iR(m)’u, (B 1 )  
(B 2) 
(B 3) 

(d2/dx2-a2)v = -mnp+Qv+inR@v, (B 4) 
du/dx = -mu-nw. (B 5 )  

(d2/dx2 - a,) w + T + n2p = Qw + i d m w  + iR(m)’u, 
(d2/dx2-a2) T - w  = aSZT+iaR[n@T+ (T)’u], 

B. 1.  Zeroth-order problem 
Substitution of expansion (4.17) into this set of equations yields to dominant order 
a set with constant coefficients, so that we may replace d/dx by hsgn (2). To order 
RO, (B 1)-(B 5) become 

,upo-% = ywo+T,+n2p, =,uT,-w, = 0, 
(B 6) 

(B 7)  

yv, + mnp,  = h sgn (x) uo + muO + nw, = 0, 

where y = h2-a2. 

The appropriate boundary conditions are 

The dispersion relation for (B 6) is 

,u3+p+n2 = 0. (B 9) 
which is equivalent to (4.16). This yields three modes, A,, A,, and A,, with non- 
negative real part. It is easily verified that the solutions given by (4.18) satisfy (B 6) 
and (B 8). 

Note that the functions u,, v,, wo, To and p ,  are all real. Further, u, is an odd 
function of x while the other variables are even in x. 

B.2. First-order problem 
To order R1, (B 1)-(B 5) become (4.23)-(4.27). The forcing for this first-order problem 
comes from the non-homogeneous terms on the right-hand sides of (4.23)-(4.26); the 
boundary conditions are homogeneous a t  this order. Knowing that t i j ,  T ,  u,, v,, w, 
and T,  are real, it follows that ul, wl, wl,  p, and are imaginary. Also with iij, T’ and 
u, odd and v,, p,, wo and T,  even in x, it follows that u1 is even and v,, wl ,  p 1  and 
are odd in x. We shall use this symmetry property to simplify the following solution. 

The general solution of this set of equations may be expressed as the sum of 
homogeneous and particular solutions : 

w1 = wh + wp, etc. (B 10) 
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The homogeneous solutions are functionally identical to  (4.18), but with differing 
complex character ; let 

3 

{wh , Ph 9 Th I = + c {p? 9 p,7 /$I exp ( - h,l4 ) , (B 11)  
1-1 

where superscripts + and - denote solutions valid for O t z  and O > x ,  respectively. 
In  the present notation, (3.5) and (3.6) are 

1 

3 

1 
p3 = - [ - ( 1  + y;) 2 4  + (p? + kh,) + y, 4 p ;  - ikh,)], 

03. 
1 

and 

(B 19) ’ 

m* = f + Im [exp ( - klzl)], 
T* = ++Im[i-iexp(-klxl)]. 

Noting that uo, vo, wo and are real, (4.23)-(4.25) may be expressed as 

p p - q  = fgin1m (B 14) 

3 d2 (s- a2) w p  + Tp + n2pp = + gin Im A,(& + kh,) exp [ - (A3 + k) Ixl]], (B 15) 

3 

Tp - wp = f i ina I m  A,(& - ikh,) exp [ - (A, + k) Ixl]]. (€3 16) 

Defining 
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The general solution of this equation satisfying the symmetry conditions is 

I .  A .  Eltayeb and D .  E .  Loper 

3 

v: = f i d ,  exp ( -alxl) T imn C B, exp ( - A,lxl) 
,-1 

where 

With v1 and w1 given by (B 21), (B 11)  and (B 17) ,  the solution of (4.27) is 
3 3 

u: = i d ,  exp ( -&I) -in C B,h,exp ( - A,lxl) +;in Im A, u, exp [ - (A ,  + k) Ixl]}, 
1-1 

where [ mu, + nw,] 
u, = 

A , + k  ‘ 

These solutions must satisfy conditions (4.29). 
Conditions (4.28) and (4.29) are satisfied provided 

3 

C Cp;>ii”,lLj,p;IBj = {&>@> n* 
I-1 

where 

3 3 

,-1 ,-1 

d , - m n C B , = G ,  IR,=-mB,+n~AjB,+zi,  (B26), (B27)  

for y = w, p ,  T ,  u, and v. Condition (B 27) serves to determine SZ, once the coefficients 
B, and B, are determined. 

Using (B 9) and noting that 

these may be expressed as 
b; F+p,&-n21jl 

/ q 3 n 2  + 2P,I . 
B, = - 

Also noting that 

(B 32) 
G m  

4 - a  an 
(B 26) yields B ----(&+@). 

Making use of the fact that any expression of the form 
3 

Cf(Pj9 AjJ,) 
1-1 

is purely real, the dispersion relation (B 27) may be expressed as (:4.30). Note that S2, 
is purely real. 
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